Software Assurance Tips

A product of the Software Assurance Tips Team[4]

Jon Hood
Monday 2" September, 2024



1 Back to the Building Blocks: Codifying Complacency

Updated Wednesday 28™ August, 2024

In February, the National Cyber Director, Harry Coker, presented the White House’s strategy for
combating cyber threats. Included in this strategy, the White House instructed technical practi-
tioners to heed reports such as Back to the Building Blocks: A Path Toward Secure and Measurable
Software.[1]

A core piece of the White House’s strategy is to “eliminate entire categories of software vulnerabil-
ities” by using programming languages which do not “lack traits associated with memory safety.”[5,
p- 71 While the White House should be applauded for recognizing the pervasive nature of memory
safety vulnerabilities, there is an underlying flaw in the assertations of the recommendation. The
report continues, “C and C++...are not memory safe programming languages. Rust [is] one example
of a memory safe programming language...”[5} p. 9]

As a software assurance practitioner, I get to review a large amount of “memory-safe” Ada soft-
ware and some Rust applications. To date, only a single project that has been provided to me for
review written in either of these languages use only the memory safe features of the language. Over
99% of the projects I have reviewed either use unchecked_conversions in Ada[2] or raw pointers
in Rust. Frequently, these projects also disable the additional memory safety checks explicitly while
citing real-time and performance requirements. Contrast this to software written in C++ where it is
not unusual to receive a project with enforced coding standards. Some of these coding standards can
require developers to use smart pointers, RAII concepts, and memory-safe development practices.
A C++ program written with such enforced coding standards will undoubtedly have fewer memory
vulnerabilities than a Rust program using raw pointers.

A development organization shouldn’t rely on the White House’s misguided recommendations to
use Rust instead of C++. There are certainly unique Rust features that afford memory safe program-
ming design for developers. To program in Rust, a developer is required to understand its concepts
of ownership. Its ownership system allows the compiler to make memory safety guarantees and en-
ables the borrow checker. While modern C++ compilers have made large improvements to verifying
lifetime ownership (such as Clang’s -Wlifetime warnings), and several borrow checking implemen-
tations for C++ exist, very few projects use those features. Rust, however, was engineered around
the borrow checker.

In conclusion, the White House did a tremendous disservice to the development community by
not recommending the enforcement of RAII concepts[3], smart pointers, and secure coding stan-
dards. Software assurance practitioners should be prepared to evaluate Rust and other “memory
safe” software applications with an additional level of scrutiny in verifying that the memory safety
protections have not been bypassed. Furthermore, DoD project offices have a history of ignoring
memory safety issues when software is written in a language such as Ada or Rust, citing misguided
directions like this one from the White House. When we deliver a report with identified memory
overflows, the project office’s reflex is frequently to ignore the issue. Project offices could become
complacent, and the issues may be swept under the rug.

In a worst-case scenario, thirty years from now, some software assurance team is going to get a
critical, Rust-developed application riddled with assembly and raw pointer memory vulnerabilities.
They will ask why the project office did not heed the software assurance scans conducted decades
earlier. The project office will answer, “We were told this was a safe language and that we weren’t
vulnerable to those issues,”-the same excuse we receive from project offices with legacy Ada code
today. Hopefully, these project offices implement the additional memory safe hardware and formal
method recommendations from the White House.



References

(1]

(2]

(3]

(4]
[5]

Harry Coker. National Cyber Director and Assistant Director. White House. 2024. URL: https :
/7youtu.be/xVYSvkogoUM?si=715_GbuSh0J4ShCt&t=259.

Jon Hood. “Ada Unchecked Conversions”. In: SWATips.com (2023). URL: https: //www. swatips.
com/articles/2023041A4 html,

Jon Hood. “Sticking with a RAII Standard”. In: SwATips.com (2021). URL: https: //www. swatips.
com/articles/20210417 html,

Jon Hood, ed. SWATips. https://www.SwATips.com/|

The White House. Back to the Building Blocks. A Path Toward Secure and Measurable Software.
2024. URL: https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD -
Technical-Report.pdf.



https://youtu.be/xVYSvkogoUM?si=7i5_GbuShOJ4ShCt&t=259
https://youtu.be/xVYSvkogoUM?si=7i5_GbuShOJ4ShCt&t=259
https://www.swatips.com/articles/20230410.html
https://www.swatips.com/articles/20230410.html
https://www.swatips.com/articles/20210412.html
https://www.swatips.com/articles/20210412.html
https://www.SwATips.com/
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

	Back to the Building Blocks: Codifying Complacency

